COMMON CORE ALGEBRA I: UNIT #5 Study Guide

Study Guide

PART I QUESTIONS: Show all of your work.

1. Which of the following is the X-coordinate of the solution to the system shown below?

$$2 \times \begin{vmatrix} +3y \\ +3y \end{vmatrix} = 18$$

$$4 \times \begin{vmatrix} -3y \\ -3y \end{vmatrix} = 12$$

$$6 \times \begin{vmatrix} -3y \\ +6 \end{vmatrix}$$

$$\times = 5$$

2. The line y = 3x + 2 is graphed. Graph the other line y = -x + 6 Which of the following would be the

y-coordinate of the solution when both lines are graphed?

3. Which of the following equations would have a solution that is the same as the solution to the system?

$$5.x - 3y = -8$$

$$5(6)-3(2)=-8$$

Solution
$$\left(\frac{6}{2}, \frac{2}{2}\right)$$

Solution
$$4x + 7y = 38$$
 $(x = 6)$ $(x + 7y = 38)$ $(x + 7y = 38)$

Circle:

$$7y = 14$$

 $\div 7$
 $\div 7$
 $7y = 2$
 $y = -3x + 20$

4. Is (4, 8) a solution to the system of equations?

$$y = 5x-12$$

$$(8) = 5(4) - 12$$
 $(8) = -3(4) + 20$

5. The quadratic functions $f(x) = -x^2 + 8$ and $g(x) = \frac{1}{3}x - 2$ are shown.

The positive solution to f(x) = g(x) is which of the following.

Write a solution.

6. Which of the following points is a solution to the system of inequalities shown graphed below?

Lotted and below Write a solution

$$y < \frac{1}{2}x - 2$$

$$(\frac{7}{3}, \frac{-7}{3})$$

7. Which of the following is the value of y that solves the system of equations shown below?

5x+6y = 51 y= 2x 6(2x)=51 12x=51 17x=51 y=2(3) y=65x +6(2x)=51 5x + 12x = 51

8. At what point do the lines y = 2x - 5 and y = -2x + 3 intersect? Show Mr. V the calculator.

2x-5 = -2x+3+2x +2 x 4x -5 = 3 4x=8

$$y = 2x - 5$$

 $y = 2(2) - 5$
 $y = 4 - 5$ (2, -1)
 $y = -1$

PART II QUESTIONS: Show all of your work. Key

Unit 5 Study Guide

9. Find the value of x that solves the system shown below. Show the work that leads to your answer.

(-6,-18)
$$y=3x$$
 and $2x+y=-30$
 $x y$ $y=3(-6) \in 2x + (3x)=-30$
The point (-6,-18) is the $y=-18$ $y=-18$ $y=-18$ $y=-30$
 $y=3(-6) \in 2x + (3x)=-30$
 $y=3(-6) \in 2x + (3x)=-30$
 $y=3(-6) \in 3x + (3x)=-30$
 $y=3$

$$y = 3x$$
 and $2x + y = -30$
 $y = 3(-6) \in$
 $y = -18$
 $2x + (3x) = -30$
 $5x = -30$
 $5x = -30$
 $5x = -6$

10. Graph the system of equations. $y = \frac{-2}{3}x + \frac{1}{3}$ and $y = \frac{1}{3}x - \frac{1}{3}$

11. What is the solution to #10?

intersection
$$\left(\frac{6}{6}, \frac{-3}{-3}\right)$$
Lines

PART III QUESTIONS: Show all of your work.

12. Solve the following system of equations algebraically. for the Solution.

$$\begin{pmatrix}
6, -5 \\
5x + 2y = 20
\end{pmatrix}$$

$$5x + 2y = 20$$

$$5(6) + 2y = 20$$

$$-2y - x = 4$$

$$30 + 2y = 20$$

$$-30$$

$$-30$$

$$2y = -10$$

$$2y = -5$$

$$4x = 24$$

$$-30$$

$$2y = -10$$

$$2y = -5$$

Unit 5 Study Gurde

13. Sketch the graph to the system of inequalities shown below. Explain how to shade.

and $y \leq \frac{1}{2}$	$\frac{2}{5}x + 6$
Dotted x	1 4
Sold 0	6
ShadeAbove 3	4
Below 6 1	2 c

Is it in the double shaded? Yes

15. The Poughkeepsie Drama Club is selling tickets to an upcoming play. They can sell 500 tickets. The adult tickets sell for 1/0 each and student tickets cost free. They would like to raise \$ 3,000. If x represents the number of adult tickets and y represents the number of student tickets, answer the following. Write a system of equations that models this situation.

$$\frac{10 \times + 0 \text{ y}}{\cos t \text{ number cost number cost of of of of of of of of the state of the stat$$

16. A party is thrown where 20 tables are used. Each table either sits 8 people or 10 people. A total of 170 people can be sat at the tables. If E represent the number of 8 person tables and T represents the number of 10 person tables, write a system of equations that models this situation.