Activator

Can you take the (square root) Multiplying Integers Rules of a negative number? No Why? Two of the same numbers
$\oplus+\oplus+\oplus$ cannot multiply to be negative
$\Theta x \Theta=\oplus$
(3) $(3)=+9$

Calculate $\sqrt{-9}$ Lesson 7.6
$(-3)(-3)=+9$
Error: Why? non-real (irrational)number

Today's Objective Unit 7

 Lesson 6 Students will be able to solve equations with exponents using (square) roots.

Today's New Vocab (1 of 4) How do you solve radical equations?

Solve. $x^{2}=36$

Can you $\Rightarrow x^{2}=36$ check your

$$
\begin{array}{rr}
x=6 \quad \text { work? YES } \quad(0) & =30 \\
36 & =36
\end{array}
$$

What is the opposite of an exponent? A root.

Yes, $x=6$
is a solution.

Page \#21
Lesson 7.6

Today's New Vocab (2 of 4)

 But, is $x=6$ the only solution? No$$
\begin{aligned}
& x^{2}=36 \\
& (-6)^{2}=36 \\
& 36=36 \\
& x=-6 \text { is } \\
& \text { also a solution. } \\
& \text { Make a table for } \\
& \mathrm{f}(\mathrm{x})=x^{2}-36 \\
& \text { Page \#21 } \\
& \text { Lesson } 7.6
\end{aligned}
$$

Today’s New Vocab (3 of 4) Graph the quadratic equation $\mathrm{f}(\mathrm{x})=x^{2}-36$.

x	$\mathrm{H}(\mathrm{x})$		$\square \square)^{\frac{1}{*}}$	U	
-6	0	Box this Zero			
-4	-20				
-1	-35	Page \#21 Lesson 7.6		551015	520253035
1	-35				
4	-20				
6	0	Box this Zero on the graph.		-	,

Today's New Vocab (4 of 4)
Solve and graph the quadratic equation.

$$
\begin{array}{rc}
4 x^{2}-3= & 97 \\
+3 & +3 \\
4 x^{2}= & 100 \\
\div 4 & \div 4
\end{array}
$$

$\mathbf{x} \quad \mathbf{y} \quad x^{2}=25$
50

$$
\sqrt{ } \quad \sqrt{ }
$$

$$
\begin{array}{l|l}
\hline-5 & 0
\end{array}
$$

Remove the exponent last.

Group Work Questions

Directions: All groups, please do all of the questions. Use your notes to help you. [Ask 2 people before you ask me.]

Stop at 9:26 or 10:56 or 12:50 or 2:15

Do a few questions on the study guide if you finish early. *One person from each group will present one question.

Work Period

Evaluate $g(4)$ when $g(x)=3-\sqrt{x+5}$.
Is $g(4)$ rational? Yes $g(4)=3-\sqrt{(4)+5}$
$\mathrm{b} / \mathrm{c} \sqrt{9}$ is perfect. $\mathrm{g}(4)=3-\sqrt{9}$

$$
\begin{array}{l|l|c|}
\mathrm{g}(4)=3-3 \\
\mathrm{~g}(4) & =0
\end{array} \quad \begin{array}{|c|}
\mathrm{x} \\
\cline { 2 - 3 } \\
\hline
\end{array}
$$

Page \#25
Lesson 7.7

Exit Ticket

Graph $\mathrm{g}(\mathrm{x})=3-\sqrt{x+5}$.
Is $(4,0)$ a root?
Yes, it is on the x-axis.

\mathbf{x}	$\mathbf{g (x)}$
-5	3
-4	2
-1	1
4	0

Page \#25
Lesson 7.7

