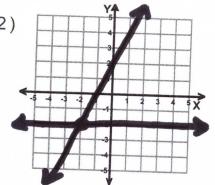
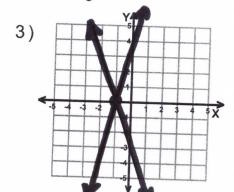

Name:	Score:	out of 70			
Folder Check Algebra Unit #5					
Name on all pages					
Pages 1-2 Worksheet Les	sson 1	Worksheet Policy			
Pages 3-4 Notes Lesson 1		-0 All Questions Done			
Pages 5-6 Worksheet Les		-1 More than Half Done			
Pages 7-8 Notes Lesson 2		-2 Only Groupwork Q's			
		-3 Less than Half Done			
Pages 9-10 Worksheet Le		-4 Blank/Absent			
Pages 11-12 Notes Lessor					
Pages 13-14 Worksheet L	esson 4	Notes Policy			
Pages 15-16 Notes Lesson	4	-0 All boxes filled			
Pages 17-18 Worksheet Le	esson 5	-1 One Empty Box			
Pages 19-20 Notes Lesson	5	-2 Two Empty Boxes			
Pages 21-22 Worksheet Le	esson 6	-3 Less than Half Done			
Pages 23-24 Notes Lesson	6	-4 Blank/Absent			
Pages 25-26 Worksheet Le	sson 7				
Pages 27-28 Notes Lesson	7	This nago			
Pages 29-30 Study Guide _		This page			
Pages 31-32 Study Guide _		on top.			

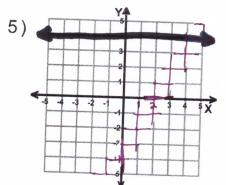


Determine the solutions to the following graphs.



$$y = \frac{7}{3}x + 5$$

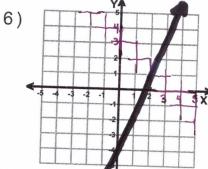
$$y = 2x + 2$$

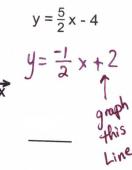


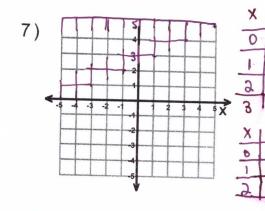
$$y = -3x - 3$$

$$y = 4x + 4$$

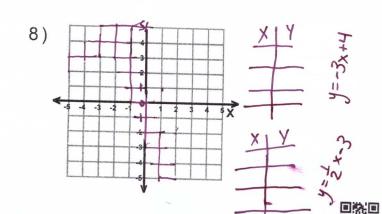
$$y = \frac{1}{4}x + .5$$


$$y = -2x - 4$$

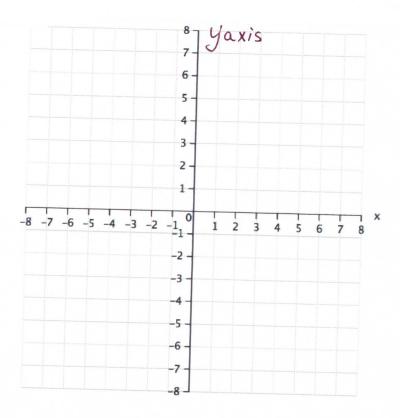



$$y=3x-5$$

 $y=4$

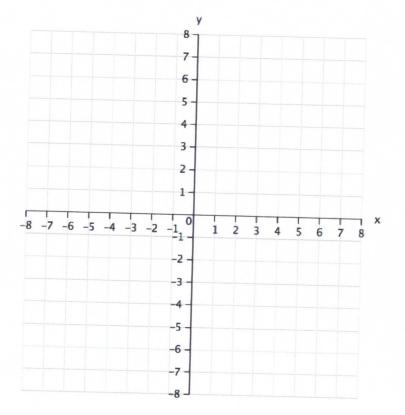

graph

this


#9 Graph the equation $U_{ni}+5$

(A) Y = 2x - 1

- Lesson 1
- (β) Is the point (3, 5) on the line?


(b) Write a non-solution

#/D Graph the equation

(A)
$$Y = \frac{-2}{3}x + 2$$

Is the point (6, -2) on the line?

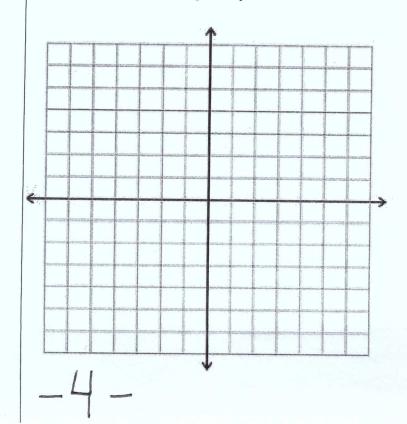
Write another solution

(D) Write a non-solution

		5		
Name:	Unit#	\mathcal{L}	Lesson #	

Activator

New Vocabulary (1 of 4)


New Vocabulary (2 of 4)

New Vocabulary (3 of 4)

	5		1
Unit#_		Lesson #	1

Work Period

Exit Ticket

Solving Systems of Equations by Substitution

Date____

Solve each system by substitution. So lue for y.

1)
$$y = 7x - 10$$

 $X = -3$
 $y = 7$
 $y = 7$

2)
$$\mathbf{X} = -8$$

 $y = -2x - 12$

Unit 5 Lesson 2
$$y = -2() - 12$$

Solve for x

3)
$$y = -6$$
 $y = 5x + 4$
() = $5x + 4$

Solve for X and y.

7.
$$y = 6x - 14$$
 $y = -8x$

$$-8x = 6x - 14$$
 New equation without y.

#8 Solve for x and y
$$y = 2x - 15$$

$$y = 5x$$

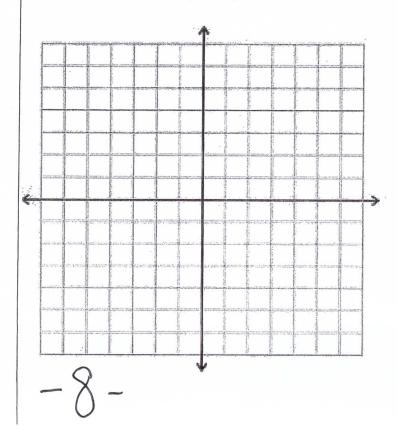
$$5x = 2x - 15$$
 New equation without y.

9)
$$y = 3x$$

 $2x + 4y = 42$
 $2x + 4() = 42$

13)
$$y = X$$

 $3x + 3y = -18$


14)
$$y = X$$

-5 x - 5 y = 0

Name:	Unit #
Activator	New Vocabulary (1 of 4)
New Vocabulary (2 of 4)	New Vocabulary (3 of 4)

	5		7
Unit#		Lesson #	$ \angle $

Work Period

Exit Ticket

Elimination Method

Date: ______ Unit 5 Lesson 3 Name: ______ L
Solve the equations for x and y.

-5x + 2y = -135) 6) 2x - 5y = 295x + 1y = 1

4x + 5y = 13

Check: Using substitution

Check:

Solve the equations

for x and y.

7)
$$-3x + y = -20$$

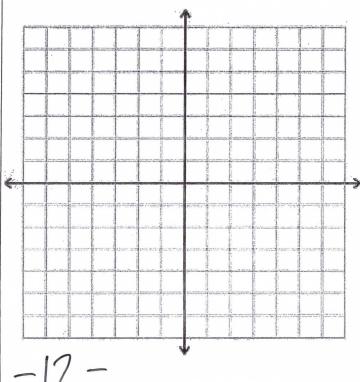
 $3x + y = 40$

8)
$$5x + 4y = 71$$

-x -4y = -43

Check: using substitution

Check:


Name:	_ Unit # 5 Lesson # 3
Activator	New Vocabulary (1 of 4)
New Vocabulary (2 of 4)	New Vocabulary (3 of 4)

_

	5			7
Unit#	\mathcal{O}	Lesson	#	\mathcal{O}
S1116 11		2000011		

Work Period

Exit Ticket

Graphing/Inequalities

1) Which of the following points lies in the solution set of $y \le 2x - 5$?

True OR FAlse

2) Which of the following points DOES not lie in the solution set of $y \ge -3x + 2$?

Is the False !

3) Graph the solution set to the inequality shown below. Identify one point that lies in the solution set and one point that does not lie in the solution set

$$y \ge 4x - 2$$

where ob you start? (0,)

what is the slope? _____

Exercise #3:

work that leads to your answer.

Is the point a system of inequalities shown below? Show the

(-2,8)

$$= 4 (-) + 2$$

Both must be

 $y \leq -4x+2$

True or False

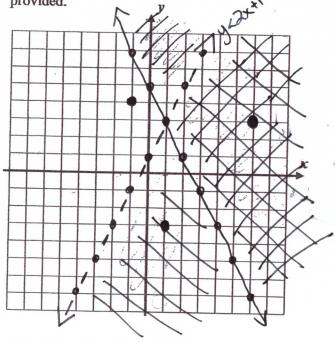
True or False

Very often, systems of inequalities will define portions of the xy-plane that can be visualized and manipulated.

Exercise #4: Consider the system of inequalities given below.

(a) Determine which, if any, of these points is a solution to the system.

$$y \ge -2 \times + 5$$


(C)

Show (6,3) is solution

Must be in the double shaded.

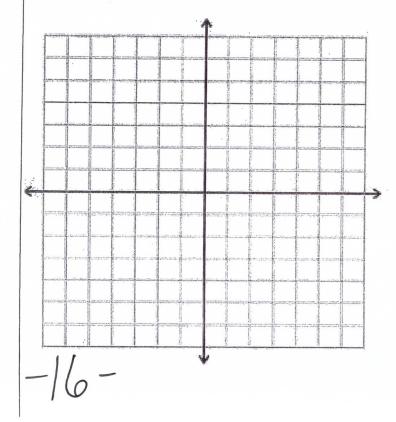
(b) Sketch the solution to the system on the grid provided.

y ≥ -2x+5 / Y < 2x+1

Name:	Unit #		Lesson #
		The second second second second second second second	

Activator

New Vocabulary (1 of 4)


New Vocabulary (2 of 4)

New Vocabulary (3 of 4)

5			\Box
Unit #		Lesson # _	

Work Period

Exit Ticket

Algebra 1 Graphing a system of equations


Unit 5 Lesson 5

Solve the following systems of equations.

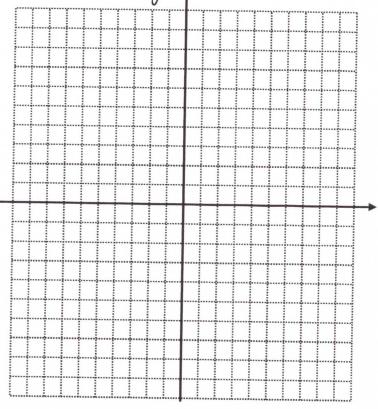
$$y + x = -1$$
 subtract x

3x + y = -7 subtract 3x

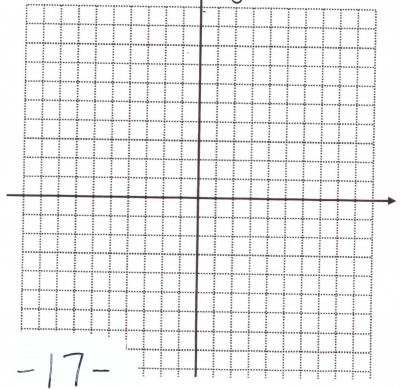
10.

What is the solution? (___,__)

Twhere the Lines cross

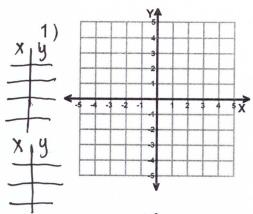

12. Solve the systems of equations

$$y - 2x = 6$$


$$-x + y = 3$$

What is the solution? (___, ___)

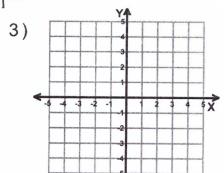
11. Graph the system


14. Graph the System

The Solution is where the Lines cross.

Unit 5 Lesson S

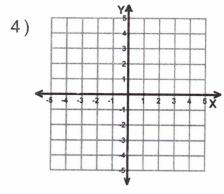
Solve each system by graphing.



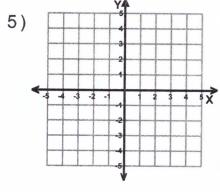
$$y = \frac{-5}{3}x + 3$$

 $y = \frac{1}{3}x - 3$

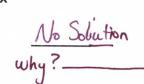
$$y = \frac{-1}{2} \times -1$$

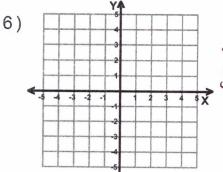

$$y = \frac{1}{4} \times -4$$

$$\times y$$
Solution

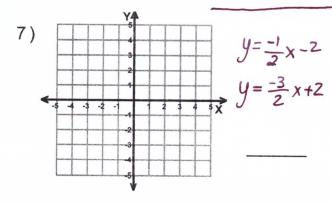

$$y=-1$$
$$x=2$$

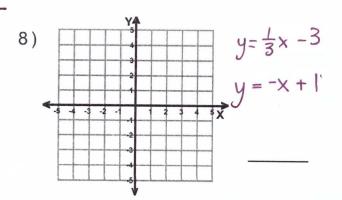
Solution




$$y = 3$$

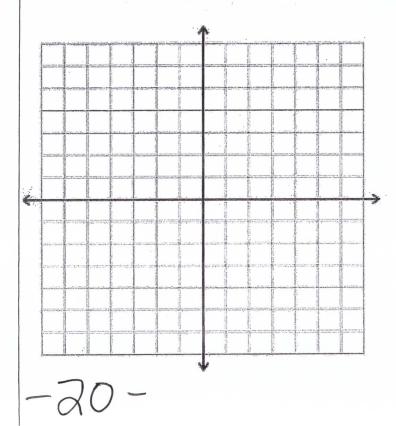
$$x = -4$$


$$y = -2x + 2$$
$$y = -2x - 2$$



$$y=3x-4$$

$$y=-\frac{1}{2}x+3$$



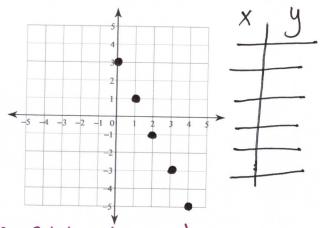
Name:	Unit # 5 Lesson # 5
Activator	New Vocabulary (1 of 4)
New Vocabulary (2 of 4)	New Vocabulary (3 of 4)

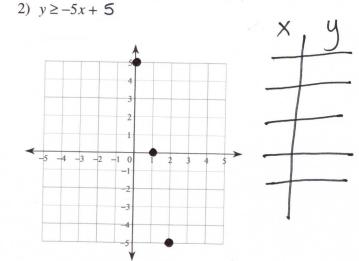
.5		5
Unit #	Lesson #	

Work Period

Exit Ticket

Systems of Inequalities

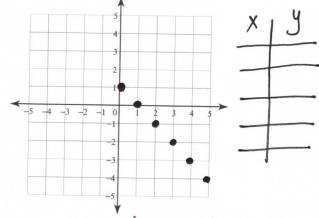

Name:


Date____

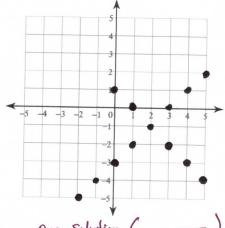
Sketch the solution to each system of inequalities.

Unit S Lesson 6

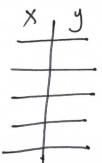
$$1) y \ge -2x + 3$$

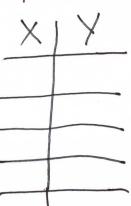


One Solution (_,_)
One Non-solution (_,_)


One Solution (-,-)

$$3) y \le -x + 1$$

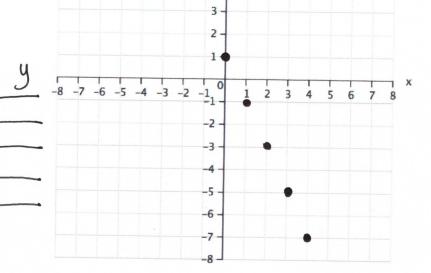



One Solution (-, -)

One Non-Solution (-,-)

One Solution (-, -)

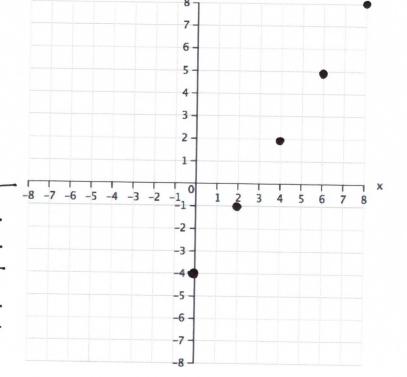
One non-solution (___,__)



#5 Graph the inequality Unit 5

(A) Y > -2x + 1

(B) Is the point (5, 3) in the shaded?



- (C) Write another solution
- (D) Write a non-solution

#6 Graph the inequality

(A)
$$Y \le \frac{3}{2}x - 4$$

(B) Is the point (6, -5) in the shaded?

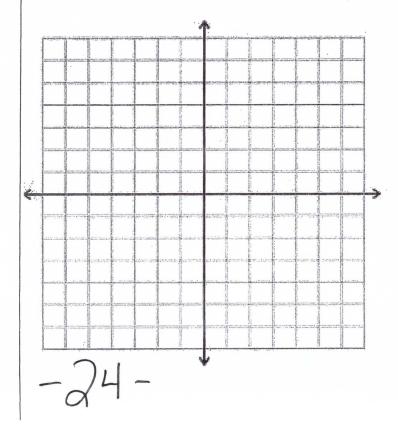
(C) Write another solution

N		\mathcal{O}	
Name:	Unit #_		L

__ Lesson # ___ (c

Activator

New Vocabulary (1 of 4)


New Vocabulary (2 of 4)

New Vocabulary (3 of 4)

	5		/
Unit#		Lesson #	6

Work Period

Exit Ticket

Name:		
Tiulite.		

Date:

MODELING WITH SYSTEMS OF EQUATIONS COMMON CORE ALGEBRA I HOMEWORK

Unit 5 Lesson 7

APPLICATIONS

$$Y = Mx + B$$

- 1. A local theater is showing an animated movie. They charge \$5 per ticket for a child and \$12 per ticket for an adult. They sell a total of 342 tickets and make a total of \$2550. We want to try to find out how many of each type of ticket they sold. Let c represent the number of children's tickets sold and a represent the
 - (a) Write an equation that represents the fact that 342 total tickets were sold.
- (b) Write an equation representing the fact that they made a total of \$2550.

+	=	
Variable Number for child tickets	Variable Number for abult tickets	tota) tickets

	-	t	_ =	
Cost per Child freket	Variable number for child trakets	Costper Adult ticket	vioriable number for Adult tickets	total Money

2. A catering company is setting up tables for a big event that will host 764. people. When they set up the tables they need 1 fork for each child and λ forks for each adult. The company ordered a total of 1146 forks. Set up a system of equations involving the number of adults, a, and the number of children, c.

Variable number for child forks.	Variable Number foa Alu H foe Ks	total people	number of foaks per Child	Variable number for child forks	number of foaks per adult	Variable nuraber for Adult	Total Number of	
10RM3.	TORKS			IOK N 3	alou 10	Fraks	forks	

3. Ilida went to Minewaska Sate Park one day this summer. All of the people at the park were either hiking or bike.

If there were a total of 676 people at the park, how many were hiking? Solve for hikers.

Now, get h by itself.

Variable number	Variable number	total people
of hikers	of bikers	in the park
#5 – SYSTEMS OF EQ MON CORE ALGEBRA I	UATIONS	-25-

1_

UNIT COM

Unit	5	Lesson	7
0 01111		re 3 30M	

4. Juanita and Keenan own a camping supply store and just put in an order for flashlights and sleeping bags.

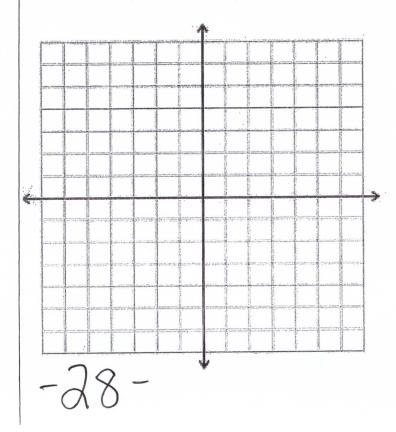
The flashlights cost \$12

There were 94 items purchased.

	+				7	<i>+ =</i>	
Cost each	Quantity Variable	Cost	Quantity Variable	Total Cost	Quantity Variable	Quantity Variable	total Items

5. For a concert, there were 100 sold tickets for the performance.

The tickets sold at the door cost \$10 and the tickets sold in advance cost \$6. The total amount of sales for both types of tickets was \$650. Let d = the number of coor tickets and Let A = the number of advanced ticket sales

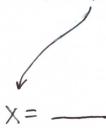

6. Eldora and Finn went to an office supply store together. Eldora bought 15 boxes of paper clips and 7 packages of index cards for a total cost of \$55.40. Finn bought 12 boxes of paper clips and 10 packages of index cards for a total cost of \$61.70. Let P = Cost of a paper clip box Let I = Cost of the Index card box

Name:	Unit #
Activator	New Vocabulary (1 of 4)
New Vocabulary (2 of 4)	New Vocabulary (3 of 4)

5		7
Unit #	Lesson #	

Work Period

Exit Ticket

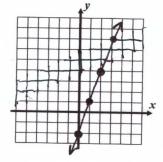


COMMON CORE ALGEBRA I: UNIT #5 Study Guide

Study Guide

PART I QUESTIONS: Show all of your work.

1. Which of the following is the X-coordinate of the solution to the system shown below?


$$2x + 3y = 18$$

$$4x - 3y = 12$$

$$4x - 3y = 12$$

2. The line y = 3x + 2 is graphed. Graph the other line y = -x + 6 Which of the following would be the

y-coordinate of the solution when both lines are graphed?

- 3. Which of the following equations would have a solution that is the same as the solution to the system? Substitute

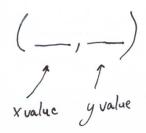
$$5, x - 3y = -8$$

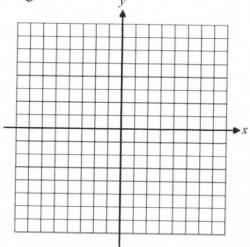
 $5(.) - 3(.) = -8$ (x, y)

Solution
$$(-, -)$$
 (x, y)

$$1X + 19 = 38$$

Circle:


4. Is (4, 8) a solution to the system of equations? $y = 5 \times -12$ $y = -3 \times +20$


$$y = 5 \times -12$$

$$y = -3 \times + 20$$

5. The quadratic functions $f(x) = -x^2 + 8$ and $g(x) = \frac{1}{3}x - 2$ are shown. The positive solution to f(x) = g(x) is which of the following.

Write a solution.

6. Which of the following points is a solution to the system of inequalities shown graphed below?

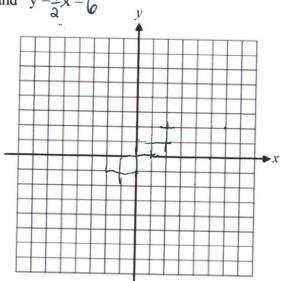
Write a solution

$$y < \frac{1}{2}x - 2$$
 $y \ge -3x + 8$

Is this point in the double shaded?

7. Which of the following is the value of y that solves the system of equations shown below?

$$5x + 6y = 51 \qquad y = 2x$$


8. At what point do the lines y = 2x - 5 and y = -2x + 3 intersect? Show Mr. V the calculator.

PART II QUESTIONS: Show all of your work.

9. Find the value of x that solves the system shown below. Show the work that leads to your answer.

$$y = 3x$$
 and $2x + y = -30$

10. Graph the system of equations. $y = \frac{-2}{3}x + 1$ and $y = \frac{1}{2}x - 6$

11. What is the solution to #10?

PART III QUESTIONS: Show all of your work.

12. Solve the following system of equations algebraically. For the Solution.

$$5x + 2y = 20$$

$$-2y - x = 4$$

13. Sketch the graph to the system of inequalities shown below. Explain how to shade.

y>4x-9	and $y < \frac{\partial}{\partial y} $
obthed x, y	3 1 70
or Solid D	on, o
Shade above 2	Solid Shale Above 3
Shade below 4	
14. Graph the point (5	Shade be low 6 Circle 5, 1) Is it a solution to the system? Yes

Is it in the double shaded?

15. The Poughkeepsie Drama Club is selling tickets to an upcoming play. They can sell 500 tickets. The adult tickets sell for 1/0 each and student tickets cost free They would like to raise \$ 3,000 If x represents the number of adult tickets and y represents the number of student tickets, answer the following. Write a system of equations that models this situation.

	=			7	+	_ =	
Number of adult tickets	number of Student tickets	number of All tickets	cost of Adult ficket	number et Adult tic Kets	0 f 1 Stroent	number of Student tickets	Cost of All tickets

16. A party is thrown where 20 tables are used. Each table either sits 8 people or 10 people. A total of 170 people can be sat at the tables. If E represent the number of 8 person tables and T represents the number of 10 person tables, write a system of equations that models this situation.