Activator

When solving for x, what did I do?

$$4 = \sqrt{x + 7}$$

To remove the root, I squared both sides.

$$16 = x + 7$$
 -7

my work.

Now, check
$$4 = \sqrt{(9)} + 7$$

my work. $4 = \sqrt{16}$

Page #25
Lesson 7.7 $4 = 4$ Yes

Today's Objective

Unit 7
Lesson 7

Students will be able to solve and graph radical equations.

Give me any number.

Give me a perfect number.

Friday May 10, 2024

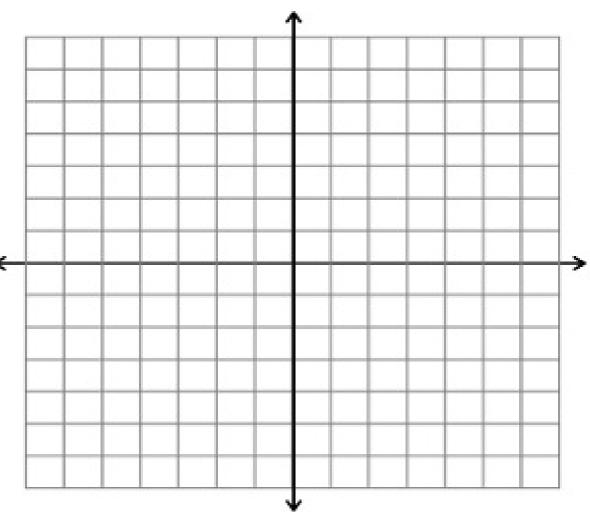
Solve for x when... $()^2$

$$3 = \sqrt{x + 5}$$

$$)^2$$

$$9 = x + 5$$

$$4 = X$$


Page #25

Today's New Vocab (2 of 4)

Graph g(x) = $3 - \sqrt{x + 5}$.

Is (4,0) a root?

Yes, it is on ← the x-axis.

X	g(x)
-5	3
-4	2
-1	1
4	0

Today's New Vocab (3 of 4)

Evaluate g(4) when g(x) = $3 - \sqrt{x + 5}$.

Is g(4) rational? Yes

b/c $\sqrt{9}$ is perfect.

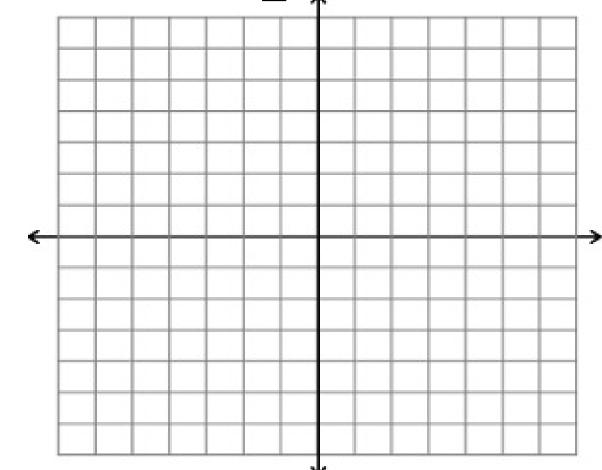
$$g(4) = 3 - \sqrt{(4) + 5}$$

$$g(4) = 3 - \sqrt{9}$$

$$g(4) = 3 - 3$$

$$g(4)=0$$

X	g(x)
4	0


Today's New Yocab (4 of 4)

Also, Graph $f(x) = \frac{1}{2} \sqrt{x + 5}$

Where does

$$G(x) = f(x) ?$$

(-1, 1)

X	f(x)
-5	0
-1	1
11	2

Work Period

Recycling operation: The people helping, $p = 90\sqrt{3}x + 400$, where x is the number of months the recycling plant has been open. How people, p, were involved starting the recycling operation?

Group Work Questions

Pages 27-28 Lesson 7.7

<u>Directions:</u> All groups, please do all of the questions. Use your notes from last class to help you. [Ask 2 people before you ask me.]

Last time, we did Lesson 7.7 Notes.

*One person from each group will present one question.

Exit Ticket

The number of people, p involved in recycling in a community is modeled by the function $p = 90\sqrt{3x} + 400$. How many people will be helping after 4 years (48 months)?

$$p(x) = 90\sqrt{3x} + 400$$
 $x = Number of Months$
 $p(48) = 90\sqrt{3(48)} + 400$ $x \neq x$

p(48) =	= 90√	144	+	400

$$p(48) = 90(12) + 400$$

$$p(48) = 1480$$

The more helping hands the better.

X	p(x)	
48	1480	

Page #26

Lesson 7.7