Activator

Graph the polynomial $f(x)=(x+1)(x+4)$
Is the vertex a minimum or maximum?

Minimum

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-4	0
-3	-2
-2	-2
-1	0

Why? Vertex is at the bottom of the graph.

Pages 13/14 Lesson 7.4

Today’s Objective
 Unit 7 Lesson 4

Students will be able to graph quadratics (polynomials).

Today’s New Vocab (1 of 3)

 Graph the polynomial $\mathrm{f}(\mathrm{x})=x^{2}+5 \mathrm{x}+4$ Write and box the solutions.Can you get the factors from the graph? Yes How? Change the signs. $f(x)=(x+1)(x+4)$

\mathbf{x}	$\mathbf{f}(\mathbf{x})$	\bullet	
-4	0	\bullet	
-3	-2	\bullet	
-2	-2		
-1	0	$x=\underline{-4}$	
$x=\underline{-1}$			

Solve for x when $x^{2}+5 x+4=0$?

$$
\begin{gathered}
(x+1)(x+4)=0 \begin{array}{c}
\text { Set both parentheses } \\
\text { equal to zero. }
\end{array} \\
\begin{array}{c}
(x+1)=0 \text { Factor } \\
(x+4)=0 \text { Factor } \\
x+1=0
\end{array} \begin{array}{ll|l}
\text { Page \#13 } \\
-1 & -1 & \text { Lesson } 7.4
\end{array} \\
x=-4=0 \\
x=-4
\end{gathered}
$$

This graph will cross the x-axis at $(-4,0)$ and $(-1,0)$

Double Check the zero's and roots.

 You can substitute either solution.$x^{2}+5 x+4=y$ and $(x+1)(x+4)=y$
$(-4)^{2}+5(-4)+4=(0) \quad((-1)+1)(x+4)=(0)$

$$
\begin{array}{r}
16-20+4=0 \\
0=0
\end{array}
$$

$$
(-1+1)(x+4)=0
$$

$$
(0)(x+4)=0
$$

$x=-1$ and $x=-4$ are solutions.

Group Work Questions

Pages 15-16 Lesson 7.4

Directions: All groups, please do all of the questions. Use your notes from last class to help you. [Ask 2 people before you ask me.] Last time, we did Lesson 7.4 Notes.
$2^{\text {nd }}$ Stop @ 9:03 $3^{\text {rd }}$ Stop @ 10:06 $8^{\text {th }}$ Stop @ 2:25
*One person from each group will present one question.

Work Period

Compare the graph of $f(x)=x^{2}$ to the graph of $g(x)=(x-2)^{2}+3$. Which two directions did the $\mathrm{g}(\mathrm{x})$ shift(move)? 2 right and 3 up

X	$\mathrm{f}(\mathrm{x})$	$f(x)$	Page \#14 Lesson 7.4	$g(x)$	X	$\mathrm{g}(\mathrm{x})$
-2	4				0	7
0	0				2	3
2	4				4	7

Exit Ticket
 What is $f(6)-\mathrm{g}(6) ? 36-19=17$
 $\mathrm{f}(\mathrm{x})=x^{2} \quad \mathrm{~g}(\mathrm{x})=(x-2)^{2}+3$
 $f(6)=(6)^{2}$
 $g(6)=(6-2)^{2}+3$
 $f(6)=36$
 Show your work.
 $g(6)=16+3$
 Page \#14
 Lesson 7.4
 $g(6)=19$

