Activator

Simplify the following expressions. Are they equivalent? YES

$$
\begin{array}{cc}
x(x) & -2 x^{2}+3 x^{2} \\
x^{2} & \substack{\text { Page\#9 } \\
\text { Lesson } 7.3} \\
\hline
\end{array}
$$

Does the exponent change? Does the exponent change?

Yes. Why?
Multiplying variables

No Why?
Combining variables

Today's Objective Unit 7

 Lesson 3
Students will be able to multiply

 and graph a quadratic.

Today’s New Vocab (1 of 4)

 The parts of a Quadratic (number exponent) graph.Here is $y=(x+1)(x-3)$ Axis of Symmetry -
A line that splits
the graph in half.
Root, Zero, or Solutions -
Where the graph crosses the x-axis.
Vertex - The highest or lowest point(s) on the graph.

Today’s New Vocab (2 of 4) When $x=-1$ and $x=3$, write the equation. $x=-1$ Solution/Zero's $x=3$ Solution $+1+1$
$x+1=0$ $\begin{gathered}\text { Page \#9 } \\ \text { Lesson } 7.3\end{gathered} \quad \begin{gathered}-3-3 \\ x-3=0\end{gathered}$ $(x+1)=0 \&$ Factors $\Rightarrow(x-3)=0$

$$
\begin{aligned}
& Y=(x+1)(x-3) \\
& \text { To write the factors, }
\end{aligned}
$$

 you need to sign switch from the graph.

Today’s New Vocab (3 of 4)

Factors can be multiplied. Zero's cannot be multiplied
Determine the product of the following factors.

$$
y=(x+1)(x-3)
$$

Write all boxes down

Today's New Vocab (4 of 4)

 Graph the polynomial $f(x)=(x+1)(x-3)$ Or, graph the function $\mathrm{g}(\mathrm{x})=x^{2}-2 x-3$| $x=-1$ | x | $\mathrm{f}(\mathrm{x})$ |
| :---: | :---: | :---: |
| 3 | -1 | 0 |
| | 0 | -3 |
| $(-1,0)(3,0)$ | 1 | -4 |
| BOX these zero's | 2 | -3 |
| on the graph. | 3 | 0 |

Page \#10
Lesson 7.3

Group Work Questions

Directions: All groups, please do all of the questions. Use your notes from last class to help you. [Ask 2 people before you ask me.] Last time, we did Lesson 7.3 Notes.
$2^{\text {nd }}$ Stop @ 9:03 $3^{\text {rd }}$ Stop @ 10:06 $8^{\text {th }}$ Stop @ 2:25
*One person from each group will present one question.

Work Period

Determine the product of the following expression.

$$
\begin{aligned}
& 2 x-4 \quad(x+2)(2 x-4) \\
& \text { Write all boxes down } \\
& 2 x^{2}-4 x+4 x-8 \\
& +2+\underset{\text { Bonus: Can you }}{+2+4 \mathbf{x}} \\
& \text { graph this? Yes } \\
& \text { Then, graph it. } \\
& 2 x^{2}-8
\end{aligned}
$$

Exit Ticket

Graph $\mathrm{G}(\mathrm{x})=2 x^{2}-8$ or $\mathrm{H}(\mathrm{x})=(\mathrm{x}+2)(2 \mathrm{x}-4)$
 Is $(-2,0)$ a solution to the system?

Page \#10
Lesson 7.3
Yes, because it is on both lines and both tables.

