Activator

Simplify. New Today! Simplify. Review 7.1
$2 x^{3}\left(5 x^{3}\right)$
2xxx(5xxx)
$10 x^{6}$ Did the
exponent change?
Yes, We multiplied x's.
Did the exponent change?
No Why? Combining like terms does not change exponents.

Today’s Objective
 Unit 7 Lesson 2

Students will be able to multiplying using the "BOX METHOD."

Definition

It is used when multiplying with

Facts
(1 of 4)

$$
x(x)=x^{2}
$$ variables.

$$
x(-4)=-4 x
$$

Box Method $3(x)=3 x$
Examples)

$$
\begin{array}{l|l}
+x^{2} & -4 x \\
\hline+3 x & -12
\end{array}
$$

Page \#5
Lesson 7.2

Today's New Vocab (2 of 4)

 Multiply the monomial by the binomial.$$
\mathrm{x}(\mathrm{x}-4) \quad \begin{gathered}
\text { Write down } \\
\text { the boxes }
\end{gathered} x^{2}-4 \mathrm{x} \quad \text { Lesson } 7.2
$$

Can you combine these together? No Why? The exponents are different

$$
\begin{array}{r|r|}
\hline x & +x^{2} \\
-4 & -4 x \\
\cline { 1 - 2 }
\end{array}
$$

$$
\text { Does } \mathrm{x}(\mathrm{x}-4)=x^{2}-4 \mathrm{x} \text { ? }
$$

Yes, all we did was multiply.
A sign (\pm) must go in each box. Simplify which means remove the ().

$$
x\left(x^{2}+x-4\right)
$$

$$
x^{2}+x-4 \text { 人 }
$$

Write all boxes down

$$
x^{3}+x^{2}-4 x
$$

A sign (\pm) must go in each box.
Is this the answer?
Are these like terms? No Yes Why?
Same variable, NOT same exponent No more like terms.

Simplify the expression.

Write all boxes down

$$
x^{2}-4 x+3 x-12
$$

Combine Like Terms (CLT)

$$
x^{2}-1 x-12
$$

Can this be graphed? Yes
A sign (\pm) must go in each box.

Group Work Questions

Directions: All groups, please do all of the questions. Use your notes from last class to help you. [Ask 2 people before you ask me.] Last time, we did Lesson 7.2 Notes.
$2^{\text {nd }}$ Stop @ 9:03 $3^{\text {rd }}$ Stop @ 10:06 $8^{\text {th }}$ Stop @ 2:25 *One person from each group will present one question.

Work Period

The expression $(x-6)^{2}$ is equivalent to $(x-6)(x-6)$ and it can be multiplied.

$x-6$

	$+x^{2}$	$-6 x$
$-6 x$	+36	

> Page \#6 Lesson 7.2
Like

$$
x^{2}-12 x+36
$$

$$
x^{2}-6 x-6 x+36
$$

Exit Ticket

$\mathrm{G}(\mathrm{x})=x^{2}-12 x+36$ and $\mathrm{F}(\mathrm{x})=(x-6)^{2}$

| \mathbf{x} | $\mathrm{G}(\mathbf{x})$ |
| :--- | :--- | Graph $\mathrm{F}(\mathrm{x})$ or $\mathrm{G}(\mathrm{x})$. You did the algebra last class.

Does $G(x)$ and $F(x)$ have an infinite (ALL) number of solutions

Yes, because it is the same line

Page \#6 Lesson 7.2

$$
G(x)=F(x) .
$$

