Activator

Given the following pattern. What is a_{7} ?

$+6+6+6$ Get colored sheets from the table.

$\frac{2}{a_{0}} \frac{8,14}{a_{1}} a_{2}, \frac{20}{a_{3}}, \frac{26}{a_{4}}, \frac{32}{a_{5}}, \frac{38}{a_{6}}, \frac{44}{a_{7}}$
Is this an exponential pattern? No
Why? It is NOT repeated multiplication.
$Y=6 x+2$
No exponent
Page \#17
Lesson 6.5

Today’s Objective

Students will be able to compare linear, exponential, and recursive (reoccurring) patterns.

Today’s New (1 of 4)

An exponential pattern has REPEATED multiplication and/or division.
A linear pattern has REPEATED addition and/or subtraction.
A recursive pattern (reoccurring) can be written for both.

RED= No, YELLOW= Yes, BLUE= Question

Today's New Vocab (2 of 4)

 Write the pattern recursively $A_{n+1}=A_{n}+12$> | Page $\# 17$ | |
| :--- | :--- |
| Lesson 6.5 | $A_{n}=$ The current number |
| $A_{n+1}=$ The next number | | $+12+12+12 \quad A_{0}=B=6$

$6,18,30,42$ What is A_{3} ? 42
$\begin{array}{llll}A_{0} & A_{1} & A_{2} & A_{3}\end{array}$
Is this pattern also Linear? Yes Why? Repeated Addition

Today's New Vocab (3 of 4)

Write the linear
Recursive formula pattern as a

$$
A_{n+1}=A_{n}-2
$$

recursive pattern. Linear? Yes

$$
A_{1}=4
$$ Page \#17

Lesson 6.5 Pattern?
$A_{0}=\mathrm{B}=6$ $\begin{array}{llll}-2 & -2 & -2 & \text { Subtraction of } 2\end{array}$
$\begin{array}{lll}6, & 4, & 2, \\ a_{0} & a_{1} & a_{2}\end{array} \frac{0}{a_{3}}, \frac{-2}{a_{4}}, \frac{-4}{a_{5}}, \frac{-6}{a_{6}}, \frac{-8}{a_{7}}$

Today’s New Vocab (4 of 4 Write the pattern recursively. Find P_{1} $P_{x+1}=(2) P_{x}$

$$
P_{0}=4
$$

$P_{0+1}=(2) P_{0}$
$P_{1}=(2)(4)$
$P_{1}=8$

\mathbf{x}	$\mathbf{P (x)}$
0	4
1	8
2	16
3	32

Group Work Questions

Directions: All groups, please do all of the questions. Use your notes from last class to help you. [Ask 2 people before you ask me.] Last time, we did Lesson 6.5 Notes.
$2^{\text {nd }}$ Stop @ 9:03 $3^{\text {rd }}$ Stop @ 10:06 $8^{\text {th }}$ Stop @ 2:25
*One person from each group will present one question.

Work Period

Page \#18 Lesson 6.5
Write the table as a recursive pattern. $A_{n+1}=(3) A_{n}$
$A_{0}=\mathrm{B}=2$

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{A}(\mathrm{n})$	$\mathbf{2}$	6	18	54

Pattern? (3)
(3) (3)(3)

What type of pattern is this? Exponential Write the equation for this pattern. $Y=2(3)^{x}$

Complete the recursive table. What is T_{4} ? $T_{2+1}=(-1) T_{2}$ $T_{3}=(-1)(2)$

$$
T_{3+1}=(-1) T_{3}
$$

$$
T_{3}=-2
$$

$$
P_{\text {Page } \# 18} T_{4}=(-1)(-2)
$$

Lesson 6.5 $T_{4}=2$

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathrm{T}(\mathrm{n})$	$\mathbf{2}$	$-\mathbf{2}$	2	-2	$\mathbf{2}$

$$
C=\frac{L}{-2}=(-1)
$$

