Activator

Given the following pattern. What is a_7 ?

+6 +6 +6 <u>Get colored sheets from the table.</u>

2, 8, 14, 20, 26, 32, 38, $a_0 a_1 a_2 a_3 a_4 a_5 a_6$ a_7

Is this an exponential pattern? No

Why? It is NOT repeated multiplication.

Y = 6x + 2

No exponent Page #17

esson 6.5

Today's Objective Unit 6 Lesson 5

Students will be able to compare linear, exponential, and recursive (reoccurring) patterns.

Today's New (1 of 4)

An exponential pattern has REPEATED multiplication and/or division. A linear pattern has REPEATED addition and/or subtraction.

A recursive pattern (reoccurring) can be written for both.

RED= No, YELLOW= Yes, BLUE= Question

Today's New Vocab (2 of 4) Write the pattern recursively $A_{n+1} = A_n + 12$

- Page #17 Lesson 6.5
- A_n = The current number A_{n+1} = The next number
- +12 +12 +12 $A_0 = B = 6$ 6, 18, 30, 42 What is A_3 ? 42 $A_0 A_1 A_2 A_3$
- Is this pattern also Linear? Yes Why? Repeated Addition

Today's New Vocab (3 of 4)							
Write the linear		F	Recursive formula				
pattern as a			A_{n+1}	$= A_n$	- 2		
recursive patter Page #17 Lesson 6.5	Pat	ar? Yes tern? ction o	s A	$a_1 = 4$ = B = 0			
		-2_,	-4 ,	-6,	-8		
$a_0 a_1 a_2$		a_4	a_5	a_6	a_7		

Today's New Vocab (4 of 4) Write the pattern recursively. Find P ₁							
$P_{11} = (2)P_{11}$							
$P_0 = 4$	X	P(x)	Page #18 Lesson 6.5				
$P_{0+1} = (2)P_0$	0	4	(2)				
	1	8	(2,16)				
$P_1 = (2)(4)$	2	16	(0,4)				
$P_1 = 8$	3	32	← → h				

Group Work Questions

<u>Directions:</u> All groups, please do all of the questions. Use your notes from last class to help you. [Ask 2 people before you ask me.]

Last time, we did Lesson 6.5 Notes.

2nd Stop @ 9:03 ^{3rd} Stop @ 10:06 *One person from each group will present one question. **Work Period**

Page #18 Lesson 6.5

3

54

18

Write the table as a recursive pattern.

$$A_{n+1} = (3)A_n$$
n012 $A_0 = B = 2$ $A(n)$ 26185Pattern? (3)(3) (3)(3)

What type of pattern is this? Exponential Write the equation for this pattern. $Y = 2(3)^{\chi}$

Exit Ticket

Complete the recursive table. What is T_4 ? $T_{2+1} = (-1)T_2$ $T_{3+1} = (-1)T_3$ $T_3 = (-1)(2)$ $\frac{T_{4}}{T_{4}} = (-1)(-2)$ $T_3 = -2$ $\frac{\text{Lesson 6.5}}{1}T_4 = 2$ · **1** 0 2 3 n $T_0 = 2$ -2 2 -2 T(n) 2 (-1) (-1) (-1)