Activator

How are the two functions different? What is $\mathrm{k}(4)$ and $\mathrm{j}(4)$? $k(x)=2^{x} \quad$ Not $\mathrm{k}(4)=2^{(4)}$ Linear $\mathrm{k}(4)=(2)(2)(2)(2)$
$j(x)=2 x$ Linear $j(4)=2(4)$ $j(4)=8$

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
4	16

\mathbf{x}	$\mathbf{j}(\mathbf{x})$
4	8

Today’s Objective
 Unit 6 Lesson 4

Students will be able to evaluate and graph exponential functions.

Misconception of the day
Origin $(0,0)$ in the center
Origin $(0,0)$ in the corner

When $x=3$, what is $j(3)$?
Evaluate $j(x)=16 \cdot 4^{x}$

$$
\begin{aligned}
& j(3)=16 \cdot 4^{(3)} \\
& j(3)=16 \cdot 4(4)(4) \\
& j(3)=16 \cdot 64
\end{aligned}
$$

Is the point $(3,1024)$ on the line $\mathrm{j}(\mathrm{x})=16 \cdot 4^{x}$? Yes

Today’s New Vocab (3 of 4)
Evaluate $\mathrm{k}(\mathrm{x})=16 \cdot \frac{1}{4}^{x}$

$$
k(2)=16 \cdot \frac{1}{4}^{(2)}
$$

$$
k(2)=16 \cdot \frac{1}{4} \cdot \frac{1}{4}
$$

Page \#13 Lesson 6.4

$$
k(2)=1
$$

When $x=2$, what is $k(2)$?

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
0	16
1	4
2	1

Today's New Vocab (4 of 4)

$\operatorname{Graph} \mathrm{k}(\mathrm{x})=16 \cdot \frac{1}{4}$ over the interval

of $0 \leq x \leq 2$
The origin
$(0,0)$ is in
the corner.
Zoom in.
Page \#14
Lesson 6.4

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
0	16
1	4
2	1

Growth or Decay?

Group Work Questions

Directions: All groups, please do all of the questions. Use your notes to help you. [Ask 2 people before you ask me.]

Stop at 9:26 or 10:56 or 12:50 or 2:15

Do a few questions on the study guide if you finish early. *One person from each group will present one question.

Work Period

Who is the most productive in hour 2 and 6?

Tom and Sean What is his productivity rate at those hours?

$$
\begin{array}{ll}
\mathrm{T}(2)=47 & \mathrm{~T}(6)=47 \\
\mathrm{~S}(2)=27 & \mathrm{~S}(6)=75 \\
\mathrm{~B}(2)=3 & \mathrm{~B}(6)=27
\end{array}
$$

Exit Ticket

When $x=2$, what is $j(2)$?
Evaluate $j(x)=3 \cdot 5^{x}$ the function.
$j(2)=3 \cdot 5^{(2)}$
$j(2)=3 \cdot 5(5)$
$j(2)=3 \cdot 25$
Growth or decay function? Why?

Growth, the numbers increase

