## Activator

Which line is straight? The left Why?
There is no exponent in the function/equation.


# Today's Objective Unit 6 

 Lesson 3
## Students will be able to graph exponential functions.



# Today's New Vocab (1 of 4) What are exponential equations? $\mathrm{y}=\mathrm{B}(C)^{x}$ 

 Curved lines with an exponent. Example $y=2^{x}$ or $f(x)=2^{x}$Page \#9
Lesson 6.3
$B=$ is the beginning and initial value $(0, B)$ and where the graph crosses the $y$-axis.


# Today’s New Vocab (2 of 4) 

Create a graph for $\mathrm{y}=2^{x}$
over the interval
$0 \leq x \leq 3$.
01 B

| 1 | 2 |
| :--- | :--- |
| 2 | 4 |
| 3 | 8 |$(2)$

$C=2$ Common (multiplier).

Today's New Vocab (3 of 4) If $\mathrm{f}(\mathrm{x})=(2)^{x} \quad \mathrm{y}=\mathrm{B}(C)^{x}$ What is $f(3)$ ?
$\mathrm{f}(\mathrm{x})=(2)^{x}$

$f(3)=8 \quad$| Page $\# 10$ |
| :---: |
| Leson 6.3 |$f(3)=(2)^{3}$

What is the common
$f(3)=(2)(2)(2)$
multiplier? C = $2 \quad f(3)=8$

# Today's New Vocab (4 of 4) 

 Does the function model growth or decay? $f(x)=(2)^{x} \quad$ Growth. Why? C > 1 Page \#9 The graph goes up. Lesson 6.3$f(x)=\left(\frac{1}{2}\right)^{x} \quad \begin{array}{ll}\text { Decay. Why } ? C<1 \\ \text { The graph goes down } .\end{array}$
A multiplier of (1) keeps any number the same.

## Group Work Questions

Directions: All groups, please do all of the questions. Use your notes to help you. [Ask 2 people before you ask me.]

## Stop at 9:26 or 10:56 or 12:50 or 2:15

Do a few questions on the study guide if you finish early. *One person from each group will present one question.

Create a table and graph for $\mathrm{f}(\mathrm{x})=4\left(\frac{1}{2}\right)^{x}$ over the interval $-1 \leq x \leq 2$. Is this a linear function?

| $\mathbf{x}$ | $\mathbf{f ( x )}$ |
| :---: | :---: |
| -1 | 8 |
| 0 | 4 |
| 1 | $\left(\frac{1}{2}\right)$ |
| 1 | 2 |
| 2 | 1 |

## Exit Ticket <br> What is $f(4)$ for each function?

Quadratics (Unit 7) Page \#10 Exponents (Unit 6) Number Exponent Lesson 6.3 Variable Exponent

$$
\begin{aligned}
& f(x)=x^{3} \\
& f(4)=(4)^{3} \\
& f(4)=(4)(4)(4) \\
& f(4)=64
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=3^{x} \\
& f(4)=3^{(4)} \\
& f(4)=(3)(3)(3)(3) \\
& f(4)=81
\end{aligned}
$$

