Activator

What are the next numbers in the sequence?
$800,400,200,100, \underline{50}, \underline{25}$
Pattern? Divide by 2
$6,18,54, \underline{162}, \underline{486}, \underline{1458}$
Pattern? Multiply by (3)

Today’s Objective
 Unit 6

 Lesson 2Students will be able to write exponential sequences and equations.

Definition

The beginning number is multiplied by the common multiplier.

Facts

$$
Y \underset{\mathrm{~B}=\mathrm{Beginning}}{\mathrm{~B}}(C)^{x}
$$ $\mathrm{C}=$ Common Multiplier

Exponential Formula

$$
\begin{aligned}
& B=6 \\
& C=3
\end{aligned}
$$

Example(s)
$Y=6(3)^{2}$

$$
Y=6(3)(3)
$$

(1 of 4)

$$
6,18,54
$$

Today’s New Vocab (2 of 4)

 How do you calculate the Common (C) Multiplier?
Multiply
 $3,6,12,24 \quad \frac{a_{2}}{a_{1}}=\frac{12}{6}=2 \quad$ by 2 $a_{1} 6$
 $900,300,100,33.3 \quad \frac{a_{2}}{a_{1}}=\frac{100}{300}=\frac{1}{3}$
 Page \#5 Lesson 6.2
 Divide by 3

Today’s New Vocab (3 of 4) Make a table for this pattern.

$$
Y=3(2)^{x}
$$

$$
\begin{aligned}
& B=3 \\
& C=2
\end{aligned}
$$

The Work

$$
3(2)=6
$$

$$
3(2)(2)=12
$$

$$
3(2)(2)(2)=24
$$

\mathbf{x}	$\mathbf{a (x)}$
0	3
1	6
2	(2)
2	12
3	24
	(2)

Today's New Vocab (4 of 4)

Calculate the $8^{\text {th }}$ number after the beginning.

$3,6,12, \ldots$			Page \#6 Lesson 6.2	$\mathrm{y}=\mathrm{B}(C)^{x}$
x	$a(x)$			
0	3	B		$a_{x}=3(2)^{x}$
1	6	$C=\frac{a_{2}}{a_{1}}=$	$\stackrel{2}{2}=2$	$a_{8}=3(2)^{8}$
2	12	a_{1}		$a_{8}={ }_{(3)(2)(2)(2)(2)(2)(2)(2)(2)}$
8	768			$a_{8}=768$

Group Work Questions

Directions: All groups, please do all of the questions. Use your notes to help you. [Ask 2 people before you ask me.]

Stop at 9:26 or 10:56 or 12:50 or 2:15

Do a few questions on the study guide if you finish early. *One person from each group will present one question.

Work Period

In a sequence, the beginning term is 2 and the common ratio is 3 . What is the $7^{\text {th }}$ term ?

Exit Ticket

In the sequence, the a_{2} term is 54 and the a_{1} is 18 . What is the beginning? The $5^{\text {th }}$ term after the beginning? Write the equation.

$\overline{a_{0}}, \overline{a_{1}}, \overline{a_{2}}, \frac{162}{a_{3}}, \frac{486}{a_{4}}, \frac{1458}{a_{5}}$| $a_{x}=6(3)^{x}$ |
| :--- |
| $a_{5}=6(3)^{5}$ |

$$
a_{5}=6(3)(3)(3)(3)(3)
$$

$$
\begin{gathered}
\text { Page \#6 } \\
\text { Lesson 6.2 }
\end{gathered} \quad \frac{a_{2}}{a_{1}}=\frac{54}{18}=3 \quad a_{5}=1458
$$

